

Previous Up Nex

Citations From References: 6 From Reviews: 0

MR1005874 (90k:32087) 32L05 Yang, Jae-Hyun (KR-INHA)

Holomorphic vector bundles over complex tori.

J. Korean Math. Soc. 26 (1989), no. 1, 117–142.

Let E be a holomorphic vector bundle of rank r over a complex torus $T = \mathbf{C}^g/L$. The bundle E is said to be semihomogeneous if for each $x \in T$ there exists a line bundle F over T such that $T_x^*(E) \cong E \otimes F$, where T_x is the translation of T by x. The author proves that the following conditions are equivalent: (1) E is semihomogeneous; (2) the associated projective bundle $\mathbf{P}(E)$ is flat (i.e., admits a system of constant transition functions); (3) the total Chern class c(E) is given by $c(E) = (1 + c_1(E)/r)^r$; (4) the automorphy factor J of E is of the form $J(\alpha, z) = G(\alpha) \exp((\pi/r)H(z, \alpha) +$ $(\pi/2r)H(\alpha,\alpha))$, where $\alpha \in L, z \in \mathbb{C}^n$, H is a Riemann form for T, and $G: L \to \mathrm{GL}(r, \mathbb{C})$ is a semirepresentation of L, i.e., $G(\alpha, \beta) = G(\alpha)G(\beta)\exp((i\pi/r)E(\beta, \alpha))$, where E =Im H. The assertion $(2) \Rightarrow (4)$ was proved earlier by J. Hano [Nagoya Math. J. 61] (1976), 197–202; MR0419854]. Generalizing the result of Mukai and Oda for abelian varieties the author also proves that if E is simple (i.e. $H^0(T, \operatorname{End} E) = \mathbf{C}$), then (1), (2), (3) and (4) are equivalent to any of the following: (5) dim $H^j(T, \operatorname{End} E) = {g \choose i}$ for all $j, j = 1, 2, \dots, r$; (6) there exists an isogeny $f: \tilde{T} \to T$ and a line bundle L on \tilde{T} such that $E = f_*(L)$. D. N. Akhiezer

© Copyright American Mathematical Society 2021